دوره 12، شماره 4 - ( 10-1403 )                   جلد 12 شماره 4 صفحات 125-107 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

salimi gargari R, mofidi S M, Sanaieian H. (2024). Optimization of Building Envelope parameters Design toward Energy Conservation (Contemporary Buildings in Tehran). JRIA. 12(4), 107-125. doi:10.61186/jria.12.4.6
URL: http://jria.iust.ac.ir/article-1-1779-fa.html
سلیمی گرگری رضا، مفیدی شمیرانی سید مجید، صنایعیان هانیه. تبیین بهینه‌سازی پارامترهای طراحی پوستۀ ساختمان در جهت کاهش مصرف انرژی (نمونۀ موردی: بناهای مسکونی متداول شهر تهران) پژوهش‌هاي معماري اسلامي 1403; 12 (4) :125-107 10.61186/jria.12.4.6

URL: http://jria.iust.ac.ir/article-1-1779-fa.html


1- گروه معماری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2- گروه معماری، دانشگاه علم و صنعت ایران، تهران، ایران.
چکیده:   (1303 مشاهده)
با توجه به نقش حیاتی نمای ساختمان به‌عنوان پوسته‌ای محافظ و تأثیر آن بر مصرف انرژی، طراحی صحیح نما در فرآیند طراحی ساختمان‌ها اهمیت بسیاری دارد. با در نظر گرفتن مشکلات و زمان‌بر بودن روش‌های سنتی بهینه‌سازی، ارائۀ روشی مناسب برای استفادۀ طراحان در مراحل اولیۀ طراحی ضروری است. پوشش بیرونی ساختمان که شامل اجزای کدر و شفاف است، از فضای داخلی محافظت می‌کند و شرایط اقلیمی بیرونی را بهبود می‌بخشد. این پژوهش به بررسی پارامترهای مؤثر در نمای ساختمان‌ها بر رفتار حرارتی و مصرف انرژی پرداخته است. ابتدا با مرور سیستماتیک منابع و مطالعات مشابه، پارامترهای کالبدی نما شناسایی و سپس انواع نماهای موجود در منطقۀ ۱۵ بررسی می‌شوند. پس از انجام مطالعات، نقشۀ GIS منطقه به‌طور دقیق تحلیل و انواع نماهای متداول به‌روش میدانی استخراج شده‌اند. سپس میزان تأثیر پارامترهای ساختاری جدارۀ ساختمان شامل لایه‌بندی دیوارها و نماسازی و عایق‌کاری بر میزان مصرف انرژی سرمایشی و گرمایشی بررسی و تجزیه و تحلیل می‌شود. نتایج حاصل از شبیه‌سازی با مطالعات میدانی صحت‌سنجی و  اعتباربخشی می‌شوند.
لایه‌بندی دیوارها بیشترین میزان تأثیر بر مصرف انرژی در ساختمان را بر عهده دارد. با توجه به نتایج به‌دست‌آمده، رابطۀ مستقیمی بین ضریب هدایت حرارتی دیوار و میزان مصرف انرژی وجود دارد و در بهینه‌ترین حالت تا بدترین حالت حدود 38.43 کیلووات ساعت بر مترمربع در انرژی گرمایش و 1.48 کیلووات ساعت بر مترمربع در مصرف انرژی سرمایش اختلاف وجود دارد. با توجه به مصرف الکتریسته برای سرمایش، این میزان بسیار چشمگیر است. 


متن کامل [PDF 3186 kb]   (15 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: 1403/7/18 | پذیرش: 1403/9/6 | انتشار: 1403/10/8

فهرست منابع
1. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
2. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
3. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
4. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
5. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
6. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
7. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
8. DesignBuilder. (2009). DesignBuilder software User manual. In.
9. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
10. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
11. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
12. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
13. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
14. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
15. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
16. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
17. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
18. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
19. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]
20. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
21. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
22. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
23. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
24. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
25. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
26. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
27. DesignBuilder. (2009). DesignBuilder software User manual. In.
28. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
29. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
30. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
31. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
32. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
33. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
34. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
35. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
36. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
37. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
38. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش های معماری اسلامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Researches in Islamic Architecture

Designed & Developed by : Yektaweb