Volume 12, Issue 4 (12-2024)                   JRIA 2024, 12(4): 107-125 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

salimi gargari R, mofidi S M, Sanaieian H. (2024). Optimization of Building Envelope parameters Design toward Energy Conservation (Contemporary Buildings in Tehran). JRIA. 12(4), 107-125. doi:10.61186/jria.12.4.6
URL: http://jria.iust.ac.ir/article-1-1779-en.html
1- Department of Architecture, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Department of Architecture, Iran University of Science and Technology, Tehran, Iran.
Abstract:   (1305 Views)
The building envelope serves as a critical protective barrier that significantly influences energy performance, making façade design a crucial consideration in architectural planning. This study addresses the limitations of conventional optimization approaches by developing a practical methodology for early-stage design decision-making. Focusing on both opaque and transparent components of building exteriors, the research investigates key parameters affecting thermal behavior and energy efficiency. The methodology combines a systematic literature review with empirical analysis of District 15’s building stock, utilizing GIS mapping and field surveys to identify prevalent façade typologies.
A comprehensive evaluation of wall composition, insulation properties, and window-to-wall ratios reveals their collective impact on heating and cooling demands. Simulation results, validated through field measurements, demonstrate a clear correlation between wall thermal conductivity and energy consumption. Comparative analysis shows optimal façade configurations can achieve substantial energy savings - reducing heating demand by 38.43 kWh/m² and cooling load by 1.48 kWh/m² compared to inefficient designs. These findings are particularly significant for cooling-dominated climates, where electricity savings directly translate to operational cost reductions.
The study provides architects with evidence-based design guidelines for optimizing building envelopes during conceptual phases, bridging the gap between theoretical energy modeling and practical application. By quantifying the energy implications of various façade strategies, this research contributes to more sustainable building practices while establishing a replicable framework for performance-driven façade design in urban contexts.
Full-Text [PDF 3186 kb]   (15 Downloads)    
Type of Study: Research | Subject: General
Received: 2024/10/9 | Accepted: 2024/11/26 | Published: 2024/12/28

References
1. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
2. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
3. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
4. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
5. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
6. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
7. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
8. DesignBuilder. (2009). DesignBuilder software User manual. In.
9. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
10. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
11. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
12. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
13. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
14. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
15. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
16. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
17. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
18. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
19. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]
20. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
21. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
22. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
23. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
24. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
25. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
26. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
27. DesignBuilder. (2009). DesignBuilder software User manual. In.
28. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
29. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
30. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
31. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
32. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
33. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
34. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
35. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
36. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
37. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
38. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Researches in Islamic Architecture

Designed & Developed by : Yektaweb