دوره 13، شماره 1 - ( 1-1404 )                   جلد 13 شماره 1 صفحات 0-0 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

fatahi K, shadieh S. (2025). Investigating the Role of Time Interval and Ablution on the Thermal Comfort Range of Students in Academic Environments (Case Study: Architecture Students, Islamic Azad University, Ilam Branch). JRIA. 13(1),
URL: http://jria.iust.ac.ir/article-1-1772-fa.html
فتاحی کارن، شادیه شیوا. بررسی نقش فاصله زمانی و وضو داشتن افراد بر دامنه آسایش حرارتی دانشجویان در محیط‌های آموزشی؛ (مطالعه موردی: دانشجویان رشته معماری دانشگاه آزاد اسلامی واحد ایلام) پژوهش‌هاي معماري اسلامي 1404; 13 (1)

URL: http://jria.iust.ac.ir/article-1-1772-fa.html


1- گروه معماری، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران.
چکیده:   (259 مشاهده)
اثربخشی محیط‌های آموزشی به تعامل هماهنگ بین فرایندهای آموزشی و محیط داخلی بستگی دارد. بااین‌حال، عدم وجود آسایش حرارتی، می‌تواند باعث ایجاد اختلال در این دینامیک پیچیده شود. قرارگرفتن طولانی‌مدت در معرض شرایط حرارتی نامطلوب می‌تواند منجر به کاهش بهره‌وری و رضایت کلی از محیط یادگیری شود. بسیاری از کلاس‌های دانشجویان پس از اذان ظهر قرار دارند و نوع ارتباط افراد با آب در فرهنگ اسلامی به واسطه وضوگرفتن و شستشوی دست و صورت است که موجب تعدیل دمای سطح پوست بدن و در نتیجه بهبود وضعیت آسایش حرارتی افراد می‌شود. هدف از انجام پژوهش حاضر، بررسی میزان وسعت آسایش حرارتی دانشجویان بعد از وضو در مقایسه با دانشجویان بدون وضو در سطوح زمانی 30، 60، 90، و 120 دقیقه در محیط‌های آموزشی است. این پژوهش با شبیه‌سازی آموزشی در یک اتاقک اقلیمی با دماهای از قبل تنظیم شده در محدوده (17، 21، 25، 29) درجه سانتیگراد مورد آزمایش قرار گرفتند. شرکت‌کنندگان شامل 20 مرد در 4 گروه به صورت تصادفی در دو شرایط آزمایشی یک روز با وضو و روز بعد بدون وضو در سطوح زمانی 30، 60، 90، و 120 دقیقه مورد آزمایش قرار گرفتند. روش بکاررفته در این پژوهش از نوع مطالعات آزمایشگاهی و با استفاده از تحلیل آماری درون موردی با نرم‌افزار spss27 انجام شده است. نتایج نشان داد وضو گرفتن افراد قبل از حضور در اتاقک اقلیمی می‌تواند دامنه آسایش حرارتی افراد را به میزان 5/1 ساعت بیشتر از افرادی که فاقد وضو هستند بهبود بخشد.
     
نوع مطالعه: پژوهشي | موضوع مقاله: اصول راهبردی و راهکارهای عملی در معماری و شهرسازی اسلامی
دریافت: 1403/6/8 | پذیرش: 1403/11/6 | انتشار: 1404/1/27

فهرست منابع
1. بنازاده، بهاره، حیدری، شاهین و هادیان فرد، حبیب. 2020. ارتباط مقیاس‌های آسایش حرارتی با مولفه‌های فیزیکی- محیطی؛ سنجش موردی: ساختمان مدیریت دانشگاه شیراز. معماری اقلیم گرم و خشک, 8(11), 253-281.
2. زمردیان، زهراسادات، امینیان، سعید و طاهباز، منصوره. 2017. ارزیابی آسایش حرارتی در کلاس درس در اقلیم گرم و خشک مطالعات میدانی: دبستان دخترانه در شهر کاشان. نشریه هنرهای زیبا: معماری و شهرسازی, 21(4), 17-28.
3. Bannazadeh, B. , Headari, S. and Hadianfard, H. 2020. Relationship between Thermal Comfort Scales and Physical-Environmental Components; a Case Study of Shiraz University Administration Building. Journal of Architecture in Hot and Dry Climate, 8(11), 253-281.
4. Blaak, Ellen. 2001. Gender differences in fat metabolism." Current Opinion in Clinical Nutrition & Metabolic Care 4.6: 499-502. [DOI:10.1097/00075197-200111000-00006]
5. Chaudhuri, Tanaya, Deqing Zhai, Yeng Chai Soh, Hua Li, and Lihua Xie. 2018 . Thermal comfort prediction using normalized skin temperature in a uniform built environment. Energy and Buildings 159: 426-440. [DOI:10.1016/j.enbuild.2017.10.098]
6. Cheng, Xiaogang, Bin Yang, Anders Hedman, Thomas Olofsson, Haibo Li, and Luc Van Gool. 2019. NIDL: a pilot study of contactless measurement of skin temperature for intelligent building. Energy and Buildings 198: 340-352. [DOI:10.1016/j.enbuild.2019.06.007]
7. Collins, Kenneth J., Arthur N. Exton-Smith, and Caroline Doré. 1981.Urban hypothermia: preferred temperature and thermal perception in old age. Br Med J (Clin Res Ed) 282, no. 6259: 175-177. [DOI:10.1136/bmj.282.6259.175]
8. Čulić, Ana, Sandro Nižetić, Petar Šolić, Toni Perković, and Velimir Čongradac.2021.Smart monitoring technologies for personal thermal comfort: A review." Journal of cleaner production 312: 127685. [DOI:10.1016/j.jclepro.2021.127685]
9. DeGroot, D.W. and Kenney, W.L., 2007. Impaired defense of core temperature in aged humans during mild cold stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), pp.R103-R108. [DOI:10.1152/ajpregu.00074.2006]
10. Elnaklah, R., Ayyad, Y., Alnusairat, S., AlWaer, H., & AlShboul, A. J. S. 2023. A Comparison of Students' Thermal Comfort and Perceived Learning Performance between Two Types of University Halls: Architecture Design Studios and Ordinary Lecture Rooms during the Heating Season. 15(2), 1142. [DOI:10.3390/su15021142]
11. Fanger, P. O. 1970. Thermal Comfort: Analysis and Applications in Environmental Engineering.
12. Fretes, G., Llurba, C. and Palau, R., 2024. Exploring classroom temperature and humidity on students' emotions through IoT and image processing. Journal of Infrastructure, Policy and Development, 8(7), pp.1-14. [DOI:10.24294/jipd.v8i7.3808]
13. Guo, Wei, Lin Jiang, Bin Cheng, Yanfeng Yao, Chunlu Wang, Yining Kou, Sheng Xu, and Deqing Xian. 2022. A study of subtropical park thermal comfort and its influential factors during summer. Journal of Thermal Biology 109: 103304. [DOI:10.1016/j.jtherbio.2022.103304]
14. Habibi, P., Momeni, R., & Dehghan, H. 2016. The effect of body weight on heat strain indices in hot and dry climatic conditions. Jundishapur journal of health sciences, 8(2). [DOI:10.17795/jjhs-34303]
15. Hall, John E., and Michael E. Hall. 2020.Guyton and Hall Textbook of Medical Physiology E-Book: Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences.
16. Hashiguchi, Nobuko, Yue Feng, and Yutaka Tochihara. 2010. Gender differences in thermal comfort and mental performance at different vertical air temperatures. European journal of applied physiology 109 : 41-48. [DOI:10.1007/s00421-009-1158-7]
17. Hashiguchi, Nobuko, Yutaka Tochihara, Tadakatsu Ohnaka, Chiaki Tsuchida, and Tamio Otsuki. 2004. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems. Journal of physiological anthropology and applied human science 23, no. 6 : 205-213. [DOI:10.2114/jpa.23.205]
18. Inoue YO, Nakao MI, Araki TS, Murakami HI. 1991. Regional differences in the sweating responses of older and younger men. Journal of applied physiology. 1;71(6):2453-9. [DOI:10.1152/jappl.1991.71.6.2453]
19. James, William.1894. Discussion: The physical basis of emotion. Psychological review 1, no. 5: 516. [DOI:10.1037/h0065078]
20. Kang, Zhanxiao, Dahua Shou, and Jintu Fan. 2020. Numerical modeling of body heat dissipation through static and dynamic clothing air gaps. International Journal of Heat and Mass Transfer 157: 119833. [DOI:10.1016/j.ijheatmasstransfer.2020.119833]
21. Khonsary, Seyed Ali.2017.Guyton and Hall: textbook of medical physiology. Surgical neurology international 8. [DOI:10.4103/sni.sni_327_17]
22. Lan, Li, Lulu Xia, Jieyu Tang, David P. Wyon, and Hua Liu. 2019. Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation. Building and Environment 162: 106292. [DOI:10.1016/j.buildenv.2019.106292]
23. Lee, Hyunjung, Jutta Holst, and Helmut Mayer. 2013. Modification of human‐biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Advances in Meteorology 2013, no. 1: 312572. [DOI:10.1155/2013/312572]
24. Lin, Yujie, Yumeng Jin, and Hong Jin. 2022. Effects of different exercise types on outdoor thermal comfort in a severe cold city. Journal of Thermal Biology 109: 103330. [DOI:10.1016/j.jtherbio.2022.103330]
25. Liu, Haiqiang, Xidong Ma, Zhihao Zhang, Xiaoling Cheng, Yanmi Chen, and Shoichi Kojima. 2021. Study on the relationship between thermal comfort and learning efficiency of different classroom-types in transitional seasons in the hot summer and cold winter zone of China. Energies 14, no. 19: 6338.. [DOI:10.3390/en14196338]
26. Liu, Jing, Runming Yao, and Rachel McCloy. 2012 .A method to weight three categories of adaptive thermal comfort. Energy and Buildings 47: 312-320. [DOI:10.1016/j.enbuild.2011.12.007]
27. Lucas, Ruan Eduardo Carneiro, Luiz Bueno da Silva, Erivaldo Lopes de Souza, Wilza Karla dos Santos Leite, and Jonhatan Magno Norte da Silva. 2024 .Influence of environmental variables on students' cognitive performance in indoor higher education environments. Work Preprint: 1-10. [DOI:10.3233/WOR-220055]
28. Luo, Maohui, Zhe Wang, Kevin Ke, Bin Cao, Yongchao Zhai, and Xiang Zhou. 2018. Human metabolic rate and thermal comfort in buildings: The problem and challenge. Building and Environment 131: 44-52. [DOI:10.1016/j.buildenv.2018.01.005]
29. Luo, Maohui, Shuang Xu, Yin Tang, Hang Yu, Xiang Zhou, and Zong Chen. 2023. Dynamic thermal responses and showering thermal comfort under different conditions. Building and Environment 237: 110322. [DOI:10.1016/j.buildenv.2023.110322]
30. Luo, Maohui, Xiang Zhou, Yingxin Zhu, and Jan Sundell. 2016. Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate. Energy and Buildings 118: 152-159. [DOI:10.1016/j.enbuild.2016.02.041]
31. Mayer, E., 1993. Objective criteria for thermal comfort. Building and environment, 28(4), pp.399-403. [DOI:10.1016/0360-1323(93)90016-V]
32. Metzmacher, H., Wölki, D., Schmidt, C., Frisch, J. and van Treeck, C., 2018. Real-time human skin temperature analysis using thermal image recognition for thermal comfort assessment. Energy and Buildings, 158, pp.1063-1078. [DOI:10.1016/j.enbuild.2017.09.032]
33. Miao, Sen, M. Gangolells, and B. Tejedor. 2023. Data-driven model for predicting indoor air quality and thermal comfort levels in naturally ventilated educational buildings using easily accessible data for schools. Journal of Building Engineering 80: 108001. [DOI:10.1016/j.jobe.2023.108001]
34. Miyaji, Akane, Shohei Hayashi, and Naoyuki Hayashi. 2019. Regional differences in facial skin blood flow responses to thermal stimulation. European journal of applied physiology 119: 1195-1201. [DOI:10.1007/s00421-019-04109-6]
35. Mooventhan, A. and Nivethitha, L., 2014. Scientific evidence-based effects of hydrotherapy on various systems of the body. North American journal of medical sciences, 6(5), p.199. [DOI:10.4103/1947-2714.132935]
36. Nakamura, Mayumi, Tamae Yoda, Larry I. Crawshaw, Saki Yasuhara, Yasuyo Saito, Momoko Kasuga, Kei Nagashima, and Kazuyuki Kanosue. 2008. Regional differences in temperature sensation and thermal comfort in humans. Journal of applied physiology 105, no. 6: 1897-1906. [DOI:10.1152/japplphysiol.90466.2008]
37. Natsume, Keiko, Tokuo Ogawa, Junichi Sugenoya, Norikazu Ohnishi, and Kazuno Imai. 1992. Preferred ambient temperature for old and young men in summer and winter. International journal of biometeorology 36: 1-4. [DOI:10.1007/BF01208726]
38. Olgyay, Víctor. 2015. Arquitectura y clima: manual de diseño bioclimático para arquitectos y urbanistas. Gustavo Gili.
39. Parsons, Ken C. 2000. Environmental ergonomics: a review of principles, methods and models. Applied ergonomics 31, no. 6: 581-594. [DOI:10.1016/S0003-6870(00)00044-2]
40. Roelofsen, Paul. 2014. Healthy ageing-Design criteria for the indoor environment for vital elderly. Intelligent Buildings International 6, no. 1: 11-25. [DOI:10.1080/17508975.2013.830589]
41. Roelofsen, Paul. 2014. Healthy ageing and the built environment. Intelligent Buildings International 6, no. 1: 3-10. [DOI:10.1080/17508975.2013.775097]
42. Sabaoui, I., Lotfi, S. and Talbi, M., 2023. Circadian fluctuations of cognitive and psychomotor performance in medical students: the role of daytime and chronotype patterns. Chronobiology in Medicine, 5, pp.127-137. [DOI:10.33069/cim.2023.0018]
43. Sakoi, T., Kurazumi, Y., Apriliyanthi, S.R., Sawada, S.I. and Gao, C., 2024. Human body heat balance equation to consider core body temperature in assessment of heatstroke risk. Building and Environment, 247, p.111020. [DOI:10.1016/j.buildenv.2023.111020]
44. Salata, Ferdinando, Iacopo Golasi, Virgilio Ciancio, and Federica Rosso. 2018. Dressed for the season: Clothing and outdoor thermal comfort in the Mediterranean population. Building and Environment 146: 50-63. [DOI:10.1016/j.buildenv.2018.09.041]
45. Sedaghatnia, Mahtab, Mohsen Faizi, Mehdi Khakzand, and Haniyeh Sanaieian. 2021. Energy and daylight optimization of shading devices, window size, and orientation for educational spaces in Tehran, Iran. Journal of Architectural Engineering 27, no. 2: 04021011. [DOI:10.1061/(ASCE)AE.1943-5568.0000466]
46. Soebarto, Veronica, Hui Zhang, and Stefano Schiavon. 2019. A thermal comfort environmental chamber study of older and younger people. Building and Environment 155: 1-14. [DOI:10.1016/j.buildenv.2019.03.032]
47. Standard, A.S.H.R.A.E., 1992. Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
48. Sunderam, Sridhar, and Ivan Osorio. 2003. Mesial temporal lobe seizures may activate thermoregulatory mechanisms in humans: an infrared study of facial temperature. Epilepsy & Behavior 4, no. 4: 399-406. [DOI:10.1016/S1525-5050(03)00116-1]
49. Torres, K.M., Azpeitia, G.G. and Morales, G.B., 2012, November. Adaptive thermal comfort for air-conditioned offices in a warm sub-humid climate. In PLEA2012-28th Conference, Opportunities, Limits & Needs towards an Environmentally Responsible Architecture Lima, Perú.
50. Tuomaala, P., Holopainen, R., Piira, K. and Airaksinen, M., 2013, August. Impact of individual characteristics-such as age, gender, BMI, and fitness-on human thermal sensation. In Building Simulation 2013 (Vol. 13, pp. 2305-2311). IBPSA. [DOI:10.26868/25222708.2013.2240]
51. von Arx, Thomas, Kaori Tamura, Yukiya Oba, and Scott Lozanoff. 2018. The face-A vascular perspective." SWISS DENTAL JOURNAL SSO-Science and Clinical Topics 128, no. 5: 382-392. [DOI:10.61872/sdj-2018-05-405]
52. Wan, Jiahao, Qinli Deng, Zeng Zhou, Zhigang Ren, and Xiaofang Shan. 2022. Study on indoor thermal comfort of different age groups in winter in a rural area of China's hot-summer and cold-winter region. Science and Technology for the Built Environment 28, no. 10: 1407-1419. [DOI:10.1080/23744731.2022.2117499]
53. Wang, Zi, Hang Yu, Maohui Luo, Zhe Wang, Hui Zhang, and Yu Jiao. 2019. Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application. Building and Environment 161: 106231. [DOI:10.1016/j.buildenv.2019.106231]
54. Wu, Yeyu, and Bin Cao. 2022. Recognition and prediction of individual thermal comfort requirement based on local skin temperature. Journal of Building Engineering 49: 104025. [DOI:10.1016/j.jobe.2022.104025]
55. Zafarmandi, S., Matzarakis, A. and Norford, L., 2024. Effects of clothing's thermal insulation on outdoor thermal comfort and thermal sensation: A case study in Tehran, Iran. Sustainable Cities and Society, 100, p.104988. [DOI:10.1016/j.scs.2023.104988]
56. Zhang, H., 2003. Human thermal sensation and comfort in transient and non-uniform thermal environments. University of California, Berkeley.
57. Zomorodian, Zahra Sadat, Saeed Aminian, and Mansoureh Tahbaz. 2017. Thermal Comfort Assessment in Classrooms in the Hot and Dry Climate of Iran Field Survey in a Primary School of Kashan. Journal of Fine Arts: Architecture & Urban Planning 21, no. 4: 17-28.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش های معماری اسلامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Researches in Islamic Architecture

Designed & Developed by : Yektaweb